

Mathematics

Year 7 – 11 Curriculum rationale

Curriculum intent: Developing resilient and curious mathematicians who see the power and beauty of Mathematics.

Literacy/Reading/Oracy opportunities:

	Autumn					Spring					Summer		
		W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12
		Making	genera <mark>l</mark> i	sations a	bout the 1	number s	ystem 1	Making	genera <mark>l</mark> is	sations a	bout the r	number s	ystem 2
Autumn	Autumn	Place value ^{Y7U1}	arith	rties of metic ^{7U2}	mult	rs and tiples v3	Order of operations Y7U4	Positive and negat numbers ^{Y7U5}		gative	e Expressions, equations, and inequalities Y7U6		
				2-D Ge	ometry				The Cartesian plane				
Year 7	r 7		The second second	sha	ving 2-D pes ^{rus}	Constructing triangles and quadrilaterals Y7U9		Coord Y7	inates ^{U10}	sha	of 2-D apes uu	2-D fi	orming gures ^{U12}
					Fractions	ns			R	atio <mark>and</mark>	proportio	n	
	Summer		factor position J13	and cor frac	ualising nparing tions ^{U14}		nipulating ting with f Y7U15	R 9T10			Percentages Y7U17		

Place Value

Students deepen their understanding of the base 10 (decimal) number system using manipulatives and place value grids. Column addition and subtraction are revisited to reinforce the role of 10.

Properties of Arithmetic

Understanding of the four main operators is checked whilst building on language of arithmetic including sum, product, difference, calculation, operator and operations. Fact families reveal connections between operators. Commutativity is illustrated with arrays and used to simplify calculations. Associativity and distributivity are introduced and used for simplifying calculations. Representations are used throughout to help students to understand and to convince them of the properties. All three properties are used to equip students with a range of mental methods of multiplication.

Factors and Multiples

Why?

Students are introduced to factors and multiples in this unit and learn the divisibility rule for 3. They extend their understanding of multiples by finding common multiples of pairs of numbers using number patterns to deepen their understanding. They use bar models to support understanding of factors. Students explore factors pairs of integers and properties of prime and square numbers using arrays to support their understanding. 'Lots of' representations support connections to commutativity and associativity laying foundations for prime factor decomposition.

<u>Angles</u>

Students develop their understanding of the concept of angles as a measure of turn. Students have an opportunity to practise measuring and drawing angles before moving on to applying angle theorems to calculate unknown angles at a point and on a straight line. Intersecting lines and vertically opposite angles are introduced. Students begin the second week by developing their understanding of the properties of parallel lines. This is then developed through the rest of the week to introduce different angle rules involving parallel lines.

Classifying 2-D Shapes

In the first week the focus is on triangles, with students looking at properties including number of equal sides, number of equal angles, types of angles and number of lines of symmetry. Names of polygons with different numbers of sides are revisited from KS2. Students look at a range of properties of quadrilaterals including how many pairs of equal sides, equal angles and parallel sides the shape has. Rotational symmetry is introduced and connections are drawn between the number of sides/angles in a regular polygon, its order of rotational symmetry, and number of lines of symmetry.

Constructing Triangles and Quadrilaterals

This unit starts by looking at the properties of a circle and building understanding of how these properties can be used to construct shapes with equal side lengths. This is developed through the rest of the first week to introduce the approach for constructing Angle-Side-Angle triangles. The second

Prime Factorisation

After revisiting key ideas including factors, multiples, primes and squares, students are introduced to the Fundamental Theorem of Arithmetic: all integers greater than 1 are either prime or can be written as a product of prime factors in exactly one way. They learn techniques for decomposing numbers into their prime factors and use the prime factor decomposition to find square roots. In the second week, combinations of prime factors are multiplied to generate factors. Venn diagrams are introduced to help identify which prime factors to multiply to generate common factors, the highest common factor and the lowest common multiple.

<u>Conceptualising and Comparing Fractions</u> In the first week of this unit pupils explore

In the first week of this unit pupils explore representations of fractions to understand the roles of the numerator and denominator, as well as recognising fractions as the result of a division. Pupils also use reasoned approaches to compare fractions and develop an understanding of equivalent fractions. Equivalence is built on the second week, first by thinking about mixed and improper fractions, then simplest form, and finally decimal conversions.

Manipulating and Calculating with Fractions The first week of the unit focuses on multiplication with fractions. Pupils understand fractions as operators before using bar models and area models to underpin

Order of Operations	week of this unit starts with more triangle	calculation methods for multiplying with
Students establish equal and unequal priority of the	constructions where an angle and two sides are	fractions. In the final lesson pupils practise
four operations and indices, and understand brackets	given. Quadrilateral constructions are then	multiplying fractions in the context of
as a tool to manipulate this order in more complex	introduced by first giving students circles with	developing number sense of fractional scaling.
calculations.	equally spaced dots before using compasses. The	The second week builds on the foundations of
	unit ends with students using their understanding to	multiplying with fraction from week 1 to
Positive and Negative Numbers	construct a kite and parallelogram.	develop pupils' understanding of dividing with
Negative numbers are visited in contexts that		fractions. Bar models are used to demonstrate
students may have experienced in everyday life.	<u>Coordinates</u>	equivalences and inverse relationships
Number lines are used to order, compare and add	Time is spent at the beginning of the first week	between × and ÷ with fractions to enable
negatives. Addition of negatives is reinforced using	embedding the fundamental concepts of	pupils to understand and use efficient
two-sided counters. Subtraction and multiplication	coordinates: that position is described from the	calculation strategies to divide by fractions.
are explored with negative numbers. The scaling	origin and has a horizontal and vertical component.	The final week of this unit focuses on addition
model of multiplication is used to develop the sense	This is formalised when terminology and notation	and subtraction of fractions. Pupils explore
of numbers having both direction and magnitude,	are introduced before deepening understanding by	common denominators by using pictorial
with negative scalars reversing direction. This model	thinking about keeping one coordinate constant. In	representations to demonstrate the need to
is continued into Week 3 when scalars between -1	the second week students focus on lines drawn on	denominate fractions in the same way.
and 1 are explored. Multiplication and division with	grids. Coordinates of points on the graphs of $y = x$	Efficient calculation approaches are explored
negatives numbers are the continued focus, first	and $y = -x$ are considered before generating	through lowest common denominators and
looking more deeply at negative scale factors then	coordinate and plotting graphs of lines where a	adding fractions and decimals.
looking at the inverse of multiplication: division.	relationship between the x and y-coordinate is	
	described. Gradient is introduced and parallel and	Ratio and Proportion
Expressions, Equations and Inequalities	perpendicular lines are considered.	Students are introduced to ratios through a
Students are formally introduced to some algebraic		pictorial approach which allows them to share
notation that they will have seen throughout the	Area and Perimeter of 2D Shapes	a given amount in different ways and examine
previous term. Common conventions are introduced.	Pupils are introduced to different forms of measure	different mathematical ways of describing the
Key representations seen throughout the first term	to represent perimeter and area. They calculate	amounts. In the second week students spend
are revisited. Students look are expressions and	perimeters and areas of different 2-D shapes using	their time connecting their understanding of
relational operators (e.g. =, <, >) to introduce	reasoned approaches based on grids. They	scale factors and the constant of
equations and inequalities. The maintenance of	experience varying the dimensions of rectangles to	proportionality firstly to enlargements of
balance (or equal imbalance) is looked at by	preserve and change area and perimeter. The	triangles and then to line segments and part
performing the same operation on both sides of the	concept of perpendicular lines is central to finding	of line segments.
equation or inequality. Learning from the previous	the area of a parallelogram and triangle, so pupils	
two weeks is consolidated through a lens of	start the second week by examining rectilinear	Percentages
perimeter problems. The unit ends with students	shapes. Pupils use square grids to support reasoning	This first week of the unit secures the
thinking about the generalised form, and comparing	approaches for working out areas of non-rectilinear	foundations of percentages; how one whole is
counting strategies that could be used to find the nth	shapes. The formulae for areas of triangles and	equivalent to one hundred percent, using
pattern.	parallelograms are then generalised based on	number lines, converting between fractions,

		exploring how parallelograms can be arranged into rectangles, and triangles as half of parallelograms. <u>Transforming 2D Figures</u> Pupils learn how to recognise, describe and perform translations and rotations on shapes. They learn which critical features need to be included in a description of these transformations and this is supported by their understanding of angles and coordinates from earlier units. Pupils formally meet reflection and begin to combine reflections. They use the properties of corresponding points to help them reflect shapes in inclined lines of reflection before seeking equivalence between translations and double reflections in parallel lines of reflection. Enlargement is introduced in the final lesson of the unit.	decimals and percentages, before beginning to calculate percentage of amounts. Students are introduced to bearings and consider how to work out and estimate bearings using a number of different representations. Students should build a sense that a bearing and distance describe a position.
How parents / carers can support	Parents can support students in various ways with their progress in Mathematics. The main way is to be encouraging of their efforts and positive about Mathematics in general. Studies have shown that students flourish in Mathematics when parents and carers are positive about the subject themselves. On a practical note, supporting students with their homework and independent revision is extremely helpful.	Parents can support students in various ways with their progress in Mathematics. The main way is to be encouraging of their efforts and positive about Mathematics in general. Studies have shown that students flourish in Mathematics when parents and carers are positive about the subject themselves. On a practical note, supporting students with their homework and independent revision is extremely helpful.	Parents can support students in various ways with their progress in Mathematics. The main way is to be encouraging of their efforts and positive about Mathematics in general. Studies have shown that students flourish in Mathematics when parents and carers are positive about the subject themselves. On a practical note, supporting students with their homework and independent revision is extremely helpful. Online help can be found at:

	Autumn						Sp	oring			Summer		
		W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12
	_		Eq	uations and	d inequali	ities			Graphi	cal repre	esentations	,	
	Autumn	10-20-20	iences ^{8U1}	Formin solving e ys	quations	solv inequ	ng and ving alities wa	Linear graphs ¥8U4		Accuracy and estimation YSU5			
			P	roportiona	l reasonii	ng		Repres	sentation	ns and re	easoning w	ith data	
Year 8	Spring	Ratio review	Real li	fe graphs Y8U7		et and involved proportion YSUS		Un	ivariate _{Ysu9}	data	Contract (Contract)	ate data ^{8U10}	
	Summer	Angles					Area, volume, a				nd surface area		
		Angles in polygons				Bearings YSU12 Circles YSU13 Vol			Volun	lume and surface area of prisms ^{Y8U14}			
Why?	SequencesGrowing patterns are used to emphasise adding the common difference multiple times in order to develop understanding of the <i>nth</i> term formula.Students find the <i>n th</i> term of increasing and decreasing arithmetic sequences as well as quadratic sequences (using diagrams), and using the <i>n th</i> term to generate a range of sequences (arithmetic, quadratic and geometric).Forming and solving equations Students establish the critical features of expressions, equations and identities before using				e Stude such befor tic Real- Stude gradi grapi Stude	as equiva re explorin life graph ents conno ent to rat hically. ents look a	bok at prev lence and s ng ratio and ect prior le es in real li at the exan placement	sharing a q d rates of d arning of I fe context nple of 'rat	juantity in change. inearity ai s represer te' – spee	a ratio, nd nted	look at forr angles in p 'What is a angle?". Students co triangles, a finding the Students a again look angle. Students lo	evisit conce mal methoc olygon. Less polygon?' a ontinue loo and are intro sum of inte lso look at a at what is a	pts in more depth and ds for finding the sum of sons focus on issues like nd 'What is an interior king at compounded oduced to methods for erior angles of a polygon. alternate methods and and isn't an interior for and exterior angles ns. Opportunities for

pictorial representations to support the algebraic	Direct and inverse proportion	practice finding missing angles exist
manipulation in solving simple linear equations.	Students explore multiplicative relationships and	throughout the week. Formal angle notation is
Students develop more versatile algebraic	balance, and revisit key concepts such as scale factor	introduced.
manipulation including solving linear equations with	and constant of proportionality. Constant of	
negative coefficients and unknowns on both sides,	proportionality is focused on as a key concept.	<u>Bearings</u>
and applying algebraic reasoning in geometric	Students continue their work with direct proportion	Students are introduced to bearings and
contexts.	and learn methods for finding missing values with	consider how to work out and estimate
	non-integer scale factors and constants of	bearings using a number of different
Forming and solving inequalities	proportionality. Students also meet inverse	representations. Students should build a sense
Students develop their understanding of inequalities	proportion and compare directly and inversely	that a bearing and distance describe a
from Year 7 to include number line representations,	proportional relationships before finding missing	position.
understanding when inequalities are or are not	values and generalising. Finally, direct and inverse	Students continue their work on bearings in
satisfied, and finding solutions to simple linear	relationships emerge as different parts of speed ×	new contexts. Firstly, students will formalise
inequalities.	time = distance are held constant.	the relationship between A from B and B from
Students form and solve inequalities based on		A, then students will look at how pairs of
geometric properties, contexts and pictorial	<u>Univariate data</u>	bearings, and bearings and loci can help find
representations, and experience manipulations that	Students are introduced to the fundamentals of data	exact positions.
do and do not preserve inequality relationships.	collection and analysis including question writing,	
Linear graphs	classifying data, collecting data using tally charts,	Circles
Students visit and revisiting familiar linear graphs in	and interpreting data in bar and pie charts.	Students build on their understanding of
context on the Cartesian plane, such as using		circles as geometric 'tools' for constructing
coordinates, horizontal and vertical lines (from Year 7	<u>Bivariate data</u>	shapes of known side lengths to include
content) and inequalities (previous unit).	Students continue looking at data, but develop	calculating circumference and arc lengths.
The focus is on connecting relationships between	learning to bivariate data and are introduced to key	Students extend their understanding of Pi to
coordinates to the graphs of linear relationships.	representations such as bar models.	include being the ratio between the square of
Gradient is introduced.	Students extend their understanding of what	a circle's radius and diameter before
The equation of a line is considered in more depth	bivariate data is, and how it can be represented.	calculating area and perimeter of varied
culminating in students moving between the three	Making deductions from the data, such as predict	sectors and compound shapes.
representations of a linear relationship (coordinates,	non-existent data, find averages, and assessing	
graph and equation).	causality.	Volume and surface area of prisms
		Students learn the vocabulary to investigate
Accuracy and estimation		properties of solid shapes. They are
Students use number lines to round to the nearest		challenged to develop their visualisation skills
one, ten, hundred, thousand and to decimal places.		throughout the unit, this week working with 2-
They work backwards to see what a rounded number		D representations and nets.
might have been and use rounding to estimate		Students are introduced to the idea of a
calculations.		prism. They use their knowledge of nets to

	Students are introduced to significant figures, learning how to round to significant figures, deducing what a rounded number might have been and appreciating why there are different methods of rounding.		identify cross sections and calculate surface area of prisms and cylinders Students are introduced to the concept of volume. They connect units of measurement to dimensions and learn how to calculate the volume of a prism by multiplying cross- sectional area by length.
How parents / carers can support	Parents can support students in various ways with their progress in Mathematics. The main way is to be encouraging of their efforts and positive about Mathematics in general. Studies have shown that students flourish in Mathematics when parents and carers are positive about the subject themselves. On a practical note, supporting students with their homework and independent revision is extremely helpful.	Parents can support students in various ways with their progress in Mathematics. The main way is to be encouraging of their efforts and positive about Mathematics in general. Studies have shown that students flourish in Mathematics when parents and carers are positive about the subject themselves. On a practical note, supporting students with their homework and independent revision is extremely helpful.	Parents can support students in various ways with their progress in Mathematics. The main way is to be encouraging of their efforts and positive about Mathematics in general. Studies have shown that students flourish in Mathematics when parents and carers are positive about the subject themselves. On a practical note, supporting students with their homework and independent revision is extremely helpful.

	_		Autumn			Spring				Summer			
	Yea	Year 9 curriculum map											
		W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	
				Proba	bility	**		Li	near sim	ultaneou	s equation	ns	
	Autumn	FDP review	P	robability _{Y9U2}	7	sampl diag	enns and e space rams 903	Solving algebraically Y9U4			Solving graphically Y9U5		
			Geome	etry of tria	angles			Rati			tio and proportion		
Year 9	Spring	Angle review ^{yəue}	Constru congrue lo	nce and ci	The	agoras' orem ^{9U8}		Ratio review	enlarg	rity and rement	Trigono vət		
		3	G	uadratic:	3				Reason	ing with	number		
	Summer	Algebra yət			atic expr d equatio ^{Y9U13}			Surds Y9U14	2222	ices ^{U15}	Standard form ^{Y9U16}	Growth and decay ^{y9U9}	

	Fractions, Deciamls and percentages	Angle Review	Algebra Review
	Students revisit number work from KS2 and KS3 to	Students revisit angle theorems to calculate missing	In the first of this two-week unit,
	refresh their understanding of the interconnection of	angles using longer chains of reasoning, justifying	simplification is focused on, firstly by looking
	methods of calculation for fractions, decimals and	their deductions. Opportunities exist throughout the	at multiplication and division algebraic
	percentage in preparation for work on probability in	unit for estimating, naming, measuring and drawing	conventions, then by collecting like terms and
	the next unit	angles using a protractor.	finally by expanding a single pair of brackets.
			Order of operations is key this week. Order of
	<u>Probability</u>	Constructions, Congruence and Loci	operations is revisited in lesson 1 in the
			context of evaluating expressions using
	Students are introduced to theoretical probability in	Students are introduced to loci and use the	substitution, in lesson 2 using function
	a variety of contexts and with a variety of	properties of circles to find the locus of points that	machines to write and solve equations, in
	representations. Combined events are considered	are a specific distance from a point. Students	lesson 3 to solve equations.
	with the use of sample spaces, two-way tables and	develop this to find the locus of points that are	Quadratic expressions and equations
	probability tree diagrams. Students add frequency	equidistant from two points and use this to	
	tree diagrams and two-way tables to their repertoire	construct perpendicular bisector. In week 2 of this	Students look specifically at quadratic
	of probability representations and look at non-	unit, students are introduced to the conditions for	expressions and equations, including those
	random situations. They compare experimental to	congruence in triangles. This is derived from	written in the standard form $ax^2+bx+c(=0)$.
Why?	theoretical probability.	students understanding of the different ways to	Students also begin looking at quadratic
vviiy.		construct triangles. These conditions are then used	graphs and common visual features of them,
	Sets, Venns and Sample Space Diagrams	to prove when two triangles are congruent.	such as the curve and turning point. This week
			is separated in two halves. In the first two
	Students build on their existing understanding of	Pythagoras' Theorem	lessons students look at interpreting
	Venn diagrams by being introduced to set notation.		information from a quadratic graph. In the
	The second week of this unit builds on the first by	Students look at tilted squares on squared paper and	second half of the week students begin
	introducing probability presented in Venn diagrams	represent lengths as radicals before looking at how	looking at quadratics written in double
	and set notation. Students interpret and convert	this relates to right-angled triangles leading to a	brackets. Students continue to work on
	between representations to solve problems.	formal introduction to Pythagoras's theorem.	expanding brackets, as the questions gradually
		Students now start to look at different contexts in	increase in complexity, They eventually move
	Solving Algebraically	which Pythagoras' theorem can be used, such as	onto expanding more than two brackets. The
		within 2-D shapes, 3-D shapes, and the Cartesian	final lesson of the unit compares different
	Students work on algebraic manipulation, including	plane.	representations of brackets.
	some revision of solving linear equations. Students		
	are formally introduced to some formal algebraic	Ratio Review	<u>Surds</u>
	manipulation methods such as equation scaling and		
	addition and subtraction of equations within a	Ratio is revisited this week with a focus on	Students are introduced to rational and
	system. Students solve simultaneous equations by	understanding the difference between part: part and	irrational numbers, and surds. This unit can be
	adding or subtracting to remove a variable, firstly	part: whole relationships, representing those	thought of as "surds-lite" as students will be

	looking at cases in which this happens, and then using equivalent equations to manufacture these cases. The focus of this week is solving simultaneous	relationships as fractions, using the constant of proportionality and scale factor to find equivalent ratios.	introduced to surds in a way that is key stage appropriate.
	equations through substitution from one equation into another.	Similarity and Enlargement	<u>Indices</u>
	Solving Graphically Students explore linear graphs to connect understanding of solutions to linear equations in two variables to the coordinates of points that lie on their graphs, including intersections as simultaneous equations. Venn diagrams are presented as ways of capturing experimental data. Students then calculate experimental probability from information in Venn diagrams using set notation.	Students are introduced to the idea of similarity in the context of enlargement. They use, then learn, how to find the scale factor from the unit ratio. After working with inter-shape relationships, they revisit the idea of constants of proportionality. Students' attention is drawn to the similarities and differences of intra shape and inter shape relationships. They are introduced to the centre of enlargement firstly through examining enlarged shapes and their relationship to the centre.	During the first week of this unit students look at indices and roots, including looking at cases with negative indices and an index of zero. This week focusses on the index laws, looking at multiplication, division, and raising to further powers. The final lesson asks students to apply these three laws to more complex examples. <u>Standard Form</u>
		Trigonometry Students investigate a right-angled triangle in a unit circle in quadrant 1 and use what is known about similar shapes to find missing lengths of right-angled triangles. After being introduced to sine and cosine functions. Two key ideas are explored this week. Firstly, the relationship between the opposite and adjacent is looked at as the tangent of an angle is uncovered. Secondly, students look at finding unknown angles through inverse trig functions.	Students are introduced to numbers written in standard form as tools to consider and compare very large and very small numbers. They draw connections between powers of ten and place value, compare the size of numbers by considering the power of ten.
How parents / carers can support	Parents can support students in various ways with their progress in Mathematics. The main way is to be encouraging of their efforts and positive about Mathematics in general. Studies have shown that students flourish in Mathematics when parents and carers are positive about the subject themselves.	Parents can support students in various ways with their progress in Mathematics. The main way is to be encouraging of their efforts and positive about Mathematics in general. Studies have shown that students flourish in Mathematics when parents and carers are positive about the subject themselves. On a practical note, supporting students with their	Parents can support students in various ways with their progress in Mathematics. The main way is to be encouraging of their efforts and positive about Mathematics in general. Studies have shown that students flourish in Mathematics when parents and carers are positive about the subject themselves.
	On a practical note, supporting students with their homework and independent revision is extremely helpful.	homework and independent revision is extremely helpful.	On a practical note, supporting students with their homework and independent revision is extremely helpful.

	Autumn	Spring	Summer
Year 10 EDEXCEL GCSE 1Ma01	 Foundation UNIT 1: Number, powers, decimals, HCF and LCM, roots and rounding UNIT 2: Expressions, substituting into simple formulae, expanding and factorising UNIT 3: Drawing and interpreting graphs, tables and charts UNIT 4: Fractions and percentages UNIT 5: Equations, inequalities and sequences Higher UNIT 1: Powers, decimals, HCF and LCM, positive and negative, roots, rounding, reciprocals, standard form, indices and surds UNIT 2: Expressions, substituting into simple formulae, expanding and factorising, equations, sequences and inequalities, simple proof UNIT 3: Averages and range, collecting data, representing data UNIT 4: Fractions, percentages, ratio and proportion Statistics UNIT 1: The collection of data 	 Foundation UNIT 6: Angles, polygons and parallel lines UNIT 7: Statistics, sampling and the averages Statistics UNIT 3: Summarising data: measures of central tendency and dispersion UNIT 8: Perimeter, area and volume UNIT 9: Real-life and algebraic linear graphs Higher Statistics UNIT 2: Processing, representing and analysing data UNIT 5: Angles, polygons, parallel lines; Right-angled triangles: Pythagoras and trigonometry UNIT 6: Real-life and algebraic linear graphs, quadratic and cubic graphs, the equation of a circle, plus rates of change and area under graphs made from straight lines Statistics UNIT 3: Summarising data: measures of central tendency and dispersion UNIT 7: Perimeter, area and volume, plane shapes and prisms, circles, cylinders, spheres, cones; Accuracy and bounds UNIT 8: Transformations; Constructions: triangles, nets, plan and elevation, loci, scale drawings and bearings 	 Foundation UNIT 10: Transformations UNIT 11: Ratio and Proportion UNIT 12: Right-angled triangles: Pythagoras and trigonometry UNIT 13: Probability Higher Statistics UNIT 4: Scatter diagrams and correlation UNIT 9: Algebra: Solving quadratic equations and inequalities, solving simultaneous equations algebraically UNIT 10: Probability UNIT 11: Multiplicative reasoning: direct and inverse proportion, relating to graph form for direct, compound measures, repeated proportional change UNIT 12: Similarity and congruence in 2D and 3D UNIT 13: Sine and cosine rules, <i>ab</i> sin <i>C</i>, trigonometry and Pythagoras' Theorem in 3D, trigonometric graphs, and accuracy and bounds
Why?	All mathematics learned is used to help build curious mathematicians that can solve problems related to each unit. Such as	All mathematics learned is used to help build curious mathematicians that can solve problems related to each unit. Such as	All mathematics learned is used to help build curious mathematicians that can solve problems related to each unit. Such as

 Find the size of each category from a pie chart using fractions. 	 Justify when to use Pythagoras' Theorem and when to use trigonometry. Understand the use of the 0–1 scale to measure probability.
 Calculate: ¹/₂ × ⁶/₇, ³/₅ ÷ 3. Write terminating decimals (up to 3 d.p.) as fractions. Convert between fractions, decimals and percentages, common ones such as ¹/₂, ¹/₁₀, ¹/₄, ³/₄ and ⁿ/₁₀. Order integers, decimals and fractions. 	 List all the outcomes for an experiment. Know and apply the fact that the sum of probabilities for all outcomes is 1. Draw a Venn diagram of students studying French, German or both, and then calculate the probability that a student studies French given that they also study German Higher
 Given a sequence, 'Which is the 1st term greater than 50?' What is the amount of money after <i>x</i> months saving the same amount or the height of tree that grows 6 m per year? What are the next terms in the following sequences? 1, 3, 9, 100, 50, 25, 2, 4, 8, 16, Write down an expression for the <i>n</i>th term of the arithmetic sequence 2, 5, 8, 11, Is 67 a term in the sequence 4, 7, 10, 13,? 	 by = c represents a straight line. Calculate the area and/or perimeter of shapes with different units of measurement. Understand that answers in terms of π are more accurate. Calculate the perimeters and/or areas of circles, semicircles and quarter-circles given the radius or diameter and vice versa. Round 16,000 people to the nearest 1000. Round 1100 g to 1 significant figure. Work out the upper and lower bounds of a formula where all terms are given to 1 decimal place. Be able to justify that measurements to the

- <u>Higher</u>
 - Given 5 digits, what is the largest even number, largest odd number, or largest or smallest answers when subtracting a twodigit number from a three-digit number?
 - Given 2.6 × 15.8 = 41.08 what is 26 × 0.158? What is 4108 ÷ 26?
 - Know how to test if a number up to 120 is prime.

- Be able to justify that measurements to the nearest whole unit may be inaccurate by up to one half in either direction.
- Use inequality symbols to compare numbers.
- Given a list of numbers, represent them on a number line using the correct notation.
- Solve equations involving inequalities.
- If the probability of outcomes are *x*, 2*x*, 4*x*, 3*x*, calculate *x*.
- Draw a Venn diagram of students studying French, German or both, and

 Understand that every number can be written as a unique product of its prime factors. Recall prime numbers up to 100. Understand the meaning of prime factor. Write a number as a product of its prime factors. Use a Venn diagram to sort information. Write 51080 in standard form. Write 51080 in standard form. Write 3.74 x 10⁻⁶ as an ordinary number. Simplify v8. Convert a 'near miss', or any number, into standard form; e.g. 23 x 10⁷. Simplify 4<i>p</i> - 2<i>q</i>² + 1 - 3<i>p</i> + 5<i>q</i>². Evaluate 4<i>x</i>² - 2<i>x</i> when <i>x</i> = -5. Simplify <i>x⁴</i> × <i>x³</i>, <i>y³</i> ÷ <i>y²</i>, (<i>a</i>⁷)², (8<i>x</i>⁶ <i>y</i>⁴)³. Expand and simplify 3(<i>t</i> - 1) + 57. Factorise 15<i>x²y</i> - 35<i>x²y²</i>. Expand and simplify (3<i>x</i> + 2)(4<i>x</i> - 1). Factorise 6<i>x²</i> - 7<i>x</i> + 1. A room is 2 m longer than it is wide. If its area is 30 m² what is its perimeter? Use fractions when working in algebraic situations. Substitute positive and negative numbers into formulae. Know the meaning of the 'subject' of a formula when one step is required. Change the subject of a formula when two steps are required. Given a sequence, 'which is the 1st term greater than 50?' 	 then calculate the probability that a student studies French given that they also study German. Change g/cm³ to kg/m³, kg/m² to g/cm², m/s to km/h. Solve word problems involving direct and inverse proportion. Understand direct proportion as: as x increases, y increases. Understand inverse proportion as: as x increases, y decreases. Recognise that all corresponding angles in similar shapes are equal in size when the corresponding lengths of sides are not. Understand that enlargement does not have the same effect on area and volume. Understand, from the experience of constructing them, that triangles satisfying SSS, SAS, ASA and RHS are unique, but SSA triangles are not. Match the characteristic shape of the graphs to their functions and transformations. Find the area of a segment of a circle given the radius and length of the chord. Justify when to use the cosine rule, sine rule, Pythagoras' Theorem or normal trigonometric ratios to solve problems.
---	---

Be able to solve problems involving	
sequences from real-life situations, such as:	
\circ 1 grain of rice on first square, 2 grains	
on second, 4 grains on third, etc	
(geometric progression), or person	
saves £10 one week, £20 the next,	
£30 the next, etc;	
• What is the amount of money after x	
months saving the same amount, or	
the height of tree that grows 6 m per	
year;	
• Compare two pocket money options,	
e.g. same number of £ per week as	
your age from 5 until 21, or starting	
with £5 a week aged 5 and increasing	
by 15% a year until 21.	
• Convert a fraction to a decimal including	
where the fraction is greater than 1.	
• Be able to work out the price of a deposit,	
given the price of a sofa is £480 and the	
deposit is 15% of the price, without a	
calculator.	
• Find fractional percentages of amounts, with and without using a calculator.	
1	
• Convince me that 0.125 is $\frac{1}{8}$.	
• Write/interpret a ratio to describe a situation	
such as 1 blue for every 2 red, 3 adults for	
every 10 children	
Recognise that two paints mixed red to yellow	
5 : 4 and 20 : 16 are the same colour.	
• When a quantity is split in the ratio 3:5, what	
fraction does each person get?	

	 Find amounts for three people when amount for one given. Express the statement 'There are twice as many girls as boys' as the ratio 2 : 1 or the linear function y = 2x, where x is the number of boys and y is the number of girls. 		
How parents / carers can support	Parents can support students in various ways with their progress in Mathematics. The main way is to be encouraging of their efforts and positive about Mathematics in general. Studies have shown that students flourish in Mathematics when parents and carers are positive about the subject themselves. On a practical note, supporting students with their homework and independent revision is extremely helpful. Online help can be found at: <u>Corbettmaths – Videos, worksheets, 5-a-day and much more</u> This has past exam questions sorted by topic as well as past papers and help videos by topic <u>Physics & Maths Tutor (physicsandmathstutor.com)</u> Comprehensive revision notes, past papers and help videos	Parents can support students in various ways with their progress in Mathematics. The main way is to be encouraging of their efforts and positive about Mathematics in general. Studies have shown that students flourish in Mathematics when parents and carers are positive about the subject themselves. On a practical note, supporting students with their homework and independent revision is extremely helpful. Online help can be found at: <u>Corbettmaths – Videos, worksheets, 5-a-day and much more</u> This has past exam questions sorted by topic as well as past papers and help videos by topic <u>Physics & Maths Tutor (physicsandmathstutor.com)</u> Comprehensive revision notes, past papers and help videos	Parents can support students in various ways with their progress in Mathematics. The main way is to be encouraging of their efforts and positive about Mathematics in general. Studies have shown that students flourish in Mathematics when parents and carers are positive about the subject themselves. On a practical note, supporting students with their homework and independent revision is extremely helpful. Online help can be found at: <u>Corbettmaths – Videos, worksheets, 5-a-day</u> and much more This has past exam questions sorted by topic as well as past papers and help videos by topic <u>Physics & Maths Tutor</u> (physicsandmathstutor.com) Comprehensive revision notes, past papers and help videos

	Autumn	Spring	Summer
Year 11	 Foundation UNIT 14: Multiplicative reasoning: more percentages, rates of change, compound measures UNIT 15: Constructions: triangles, nets, plan and elevation, loci, scale drawings and bearings UNIT 16: Algebra: quadratic equations and graphs UNIT 17: Perimeter, area and volume 2: circles, cylinders, cones and spheres UNIT 18: More fractions, reciprocals, standard form, zero and negative indices Higher Statistics UNIT 5: Time series analysis UNIT 14: Statistics and sampling, cumulative frequency and histograms UNIT 15: Quadratics, expanding more than two brackets, sketching graphs, graphs of circles, cubes and quadratics UNIT 16: Circle theorems and circle geometry Statistics UNIT 7: Index numbers UNIT 17: Changing the subject of formulae (more complex), algebraic fractions, solving equations arising from algebraic fractions, rationalising surds, pro 	 <u>Foundation</u> UNIT 19: Congruence, similarity and vectors UNIT 20: Rearranging equations, graphs of cubic and reciprocal functions and simultaneous equations <u>Higher</u> UNIT 18: Vectors and geometric proof UNIT 19: Direct and indirect proportion: using statements of proportionality, reciprocal and exponential graphs, rates of change in graphs, functions, transformations of graphs Probability UNIT 8: Probability distributions The second part of this term will be used for bespoke revision lessons to prepare students for their GCSE Examinations 	This term will be used for bespoke revision lessons to prepare students for their GCSE Examinations
Why?	All mathematics learned is used to help build curious mathematicians that can solve problems related to each unit. Such as	All mathematics learned is used to help build curious mathematicians that can solve problems related to each unit. Such as	

Foundation

- Change m/s to km/h.
- Understand direct proportion as: as x increase, y increases.
- Understand inverse proportion as: as x increases, y decreases.
- Solve $3x^2 + 4 = 100$.
- Expand (x + 2)(x + 6).
- Factorise $x^2 + 7x + 10$.
- Solve $x^2 + 7x + 10 = 0$.
- Solve (x-3)(x+4)=0.
- Recognise a quadratic graph from its shape.
- Recall terms related to a circle.
- Understand that answers in terms of pi are more accurate.
- What is the reciprocal of 4, $\frac{1}{2}$, -2, $-\frac{1}{2}$?
- Write 51 080 in standard form.
- Write 3.74×10^{-6} as an ordinary number.
- What is 9°?

<u>Higher</u>

- Explain why a sample may not be representative of a whole population.
- Carry out their own statistical investigation and justify how sources of bias have been eliminated.
- Construct cumulative frequency graphs, box plots and histograms from frequency tables.
- Compare two data sets and justify their comparisons based on measures extracted from their diagrams where appropriate in terms of the context of the data.

<u>Foundation</u>

- Understand similarity as one shape being an enlargement of the other.
- Recognise that all corresponding angles in similar shapes are equal in size when the corresponding lengths of sides are not equal in size.
- Use *AB* notation for describing lengths and ∠*ABC* notation for describing angles.
- Solve two simultaneous equations in two variables (linear/linear) algebraically and find approximate solutions using a graph.
- Identify expressions, equations, formulae and identities from a list.

<u>Higher</u>

- Add and subtract vectors algebraically and use column vectors.
- Solve geometric problems and produce proofs.
- Explain why you cannot find the area under a reciprocal or tan graph.
- Understand that when two quantities are in direct proportion, the ratio between them remains constant.
- Know the symbol for 'is proportional to'.

• Rationalise:
$$\frac{1}{\sqrt{3}-1}$$
, $\frac{1}{\sqrt{3}}$, ($\sqrt{18}$ + 10) + $\sqrt{2}$.

- Explain the difference between rational and irrational numbers.
- Given a function, evaluate f(2).
- When g(x) = 3 2x, find $g^{-1}(x)$.

	 Expand x(x - 1)(x + 2). Expand (x - 1)³. Expand (x + 1)(x + 2)(x - 1). Sketch y = (x + 1)²(x - 2). Interpret a pair of simultaneous equations as a pair of straight lines and their solution as the point of intersection. Be able to state the solution set of x² - 3x - 10 < 0 as {x: x < -3} ∪ {x: x > 5}. Justify clearly missing angles on diagrams using the various circle theorems. Justify if a straight-line graph would pass through a circle drawn on a coordinate grid. 	Depends con support students in various ways with	Derents con support students in various wave
	Parents can support students in various ways with their progress in Mathematics. The main way is to be encouraging of their efforts and positive about Mathematics in general. Studies have shown that students flourish in Mathematics when parents and carers are positive about the subject themselves.	Parents can support students in various ways with their progress in Mathematics. The main way is to be encouraging of their efforts and positive about Mathematics in general. Studies have shown that students flourish in Mathematics when parents and carers are positive about the subject themselves.	Parents can support students in various ways with their progress in Mathematics. The main way is to be encouraging of their efforts and positive about Mathematics in general. Studies have shown that students flourish in Mathematics when parents and carers are positive about the subject themselves.
How parents / carers can support	On a practical note, supporting students with their homework and independent revision is extremely helpful. Online help can be found at:	On a practical note, supporting students with their homework and independent revision is extremely helpful. Online help can be found at:	On a practical note, supporting students with their homework and independent revision is extremely helpful.
	<u>Corbettmaths – Videos, worksheets, 5-a-day and</u> <u>much more</u> This has past exam questions sorted by topic as well	<u>Corbettmaths – Videos, worksheets, 5-a-day and</u> <u>much more</u> This has past exam questions sorted by topic as well	Online help can be found at: <u>Corbettmaths – Videos, worksheets, 5-a-day</u> <u>and much more</u>
	as past papers and help videos by topic <u>Physics & Maths Tutor (physicsandmathstutor.com)</u> Comprehensive revision notes, past papers and help videos	as past papers and help videos by topic <u>Physics & Maths Tutor (physicsandmathstutor.com)</u> Comprehensive revision notes, past papers and help videos	This has past exam questions sorted by topic as well as past papers and help videos by topic <u>Physics & Maths Tutor</u> (physicsandmathstutor.com) Comprehensive revision notes, past papers and help videos